1,130 research outputs found

    Association of Family History of Epilepsy with Earlier Age Onset of Juvenile Myoclonic Epilepsy

    Get PDF
    How to Cite This Article: Najafi MR, Najafi MA, Safaei A. Association of Family History of Epilepsy with Earlier Age Onset of Juvenile Myoclonic Epilepsy. Iran J Child Neurol. Spring 2016; 10(2):10-15.AbstractObjectiveJuvenile myoclonic epilepsy (JME) is supposedly the most frequent subtype of idiopathic generalized epilepsies (IGE). The aim of this study was to determine the prevalence of JME and comparison of patients’ demographics as well as timeline of the disease between positive family history epileptic patients (PFHE) and negative family history epileptic patients (NFHE) among sample of Iranian epileptic patients.Materials & MethodsFrom Feb. 2006 to Oct. 2009, 1915 definite epileptic patients (873 females) referred to epilepsy clinics in Isfahan, central Iran, were surveyed and among them, 194 JME patients were diagnosed. JME was diagnosed by its specific clinical and EEG criteria. Patients were divided into two groups as PFHE and NFHE and data were compared between them.ResultsJME was responsible for 10% (194 patients) of all types of epilepsies. Of JME patients, 53% were female. In terms of family history of epilepsy, 40% were positive. No significant differences was found between PFHE and NFHE groups as for gender (P>0.05). Age of epilepsy onset was significantly earlier in PFHE patients (15 vs. 22 yr, P<0.001). Occurrence of JME before 18 yr old among PFHE patients was significantly higher (OR=2.356, P=0.007).ConclusionA family history of epilepsy might be associated with an earlier age of onset in patients with JME. References1. Banerjee PN, Filippi D, Allen Hauser W. The descriptive epidemiology of epilepsy—a review. Epilepsy Res 2009;85(1):31-45.2. Khedr EM, Shawky OA, Ahmed MA, Elfetoh NA, Al Attar G, Ali AM, et al. A community based epidemiological study of epilepsy in Assiut Governorate/Egypt. Epilepsy Res 2013;103(2):294-302.3. Rektor I, Schachter SC, Arzy S, Baloyannis SJ, Bazil C, Brázdil M, et al. Epilepsy, behavior, and art (Epilepsy, Brain, and Mind, part 1). Epilepsy Behav 2013;28(2):261-82.4. Steinlein OK. Genetics and epilepsy. Dialogues Clin Neurosci 2008;10(1):29-38.5. Engel Jr J. ILAE classification of epilepsy syndromes. Epilepsy Res 2006;70:5-10.6. Janz D. Epilepsy with impulsive petit mal (juvenile myoclonic epilepsy). Acta Neurol Scandinavica 1985;72(5):449-59.7. Alfradique I, Vasconcelos MM. Juvenile myoclonic epilepsy. Arquivos de Neuro-Psiquiatria 2007;65(4B):1266-71.8. Vijai J, Cherian P, Sylaja P, Anand A, Radhakrishnan K. Clinical characteristics of a South Indian cohort of juvenile myoclonic epilepsy probands. Seizure 2003;12(7):490-6.9. Babtain FA. Impact of a family history of epilepsy on the diagnosis of epilepsy in southern Saudi Arabia. Seizure 2013;22(7):542-7.10. Montenegro MA, Guerreiro MM, Lopes-Cendes I, Guerreiro CA, Li LM, Cendes F, editors. Association of family history of epilepsy with earlier age at seizure onset in patients with focal cortical dysplasia. Mayo Clinic Proceedings 2002;77(12): 1291–94.11. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, Van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010;51(4):676-85.12. Janz D. Juvenile myoclonic epilepsy. Epilepsy with impulsive petit mal. Cleveland Clin J Med 1989;56 Suppl Pt 1:S23-33; discussion S40-2. Epub 1989/01/01.13. Najafi MR, Sonbolestan F, Sonbolestan SA, Zare M, Mehvari J, Meshkati SN. The course and outcome of pregnancy and neonatal situation in epileptic women. Adv Biomed Res 2012;1:4. Epub 2012/12/05. 14. Bittles AH. Consanguinity and its relevance to clinical genetics. Clin Genetics 2001;60(2):89-98.15. Johnston MV. Nelson’s Textbook of Pediatrics. 17th ed. Seizures in childhood. Vol. 2. Philadelphia: Saunders; 2004 p. 1993–2005.16. Sinha S, Pramod M, Dilipkumar S, Satishchandra P. Idiopathic generalized epilepsy: Phenotypic and electroencephalographic observations in a large cohort from South India. Ann Indian Academy Neurol 2013;16(2):163.17. Jallon P, Loiseau P, Loiseau J. Newly diagnosed unprovoked epileptic seizures: presentation at diagnosis in CAROLE study. Epilepsia 2001;42(4):464-75.18. Oka E, Ishida S, Ohtsuka Y, Ohtahara S. Neuroepidemiological study of childhood epilepsy by application of international classification of epilepsies and epileptic syndromes (ILAE, 1989). Epilepsia 1995;36(7):658-61.19. Murthy J, Yangala R, Srinivas M. The Syndromic Classification of the International League Against Epilepsy: A Hospital-Based Study from South India. Epilepsia 1998;39(1):48-54.20. Fittipaldi F, Curra A, Fusco L, Ruggieri S, Manfredi M. EEG discharges on awakening: a marker of idiopathic generalized epilepsy. Neurol 2001;56(1):123-6.21. Jallon P, Latour P. Epidemiology of idiopathic generalized epilepsies. Epilepsia 2005;46(s9):10-4.22. Classification Co, Epilepsy TotILA. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989;30:389-99.23. Berkovic, S. F. Genetics of epilepsy syndromes. In: Epilepsy: A Comprehensive Textbook (Eds J. Engel and T. A. Pedley). Lippincott-Raven Publ., 1997: pp. 217–224.24. Camfield CS, Striano P, Camfield PR. Epidemiology of juvenile myoclonic epilepsy. Epilepsy Behav 2013;28:S15-S7.25. Camfield CS, Camfield PR. Juvenile myoclonic epilepsy 25 years after seizure onset A population-based study. Neurol 2009;73(13):1041-5.26. Jayalakshmi SS, Mohandas S, Sailaja S, Borgohain R. Clinical and electroencephalographic study of first-degree relatives and probands with juvenile myoclonic epilepsy. Seizure 2006;15(3):177-83.27. Sozmen V, Baybas S, Dirican A, Koksal A, Ozturk M. Frequency of epilepsies in family members of patients with different epileptic syndromes. European Neurol 2010;65(1):4-9.28. Mullins G, O’sullivan S, Neligan A, McCarthy A, McNamara B, Galvin R, et al. A study of idiopathic generalised epilepsy in an Irish population. Seizure 2007;16(3):204-10.29. Shahnaz KS, Sattar RA. Clinical and EEG characteristics of Juvenile Myoclonic Epilepsy. Pak J Med Sci 2014;30(1):12.30. Liu A, Delgado-Escueta A, Gee M, Serratosa J, Zhang Q, Alonso M, et al. Juvenile myoclonic epilepsy in chromosome 6p12-p11: Locus heterogeneity and recombinations. Am J Medi Genetics 1996;63(3):438-46. 31. Figueredo R, Trevisol-Bittencourt PC, Ferro JBdM. Estudo clínico-epidemiológico de pacientes com epilepsia mioclônica juvenil em Santa Catarina. Arq Neuropsiquiatr 1999;57(2-B):401-4.32. Obeid T, Panayiotopoulos C. Juvenile myoclonic epilepsy: a study in Saudi Arabia. Epilepsia 1988;29(3):280-2.33. Nair RR, Thomas SV. Genetic liability to epilepsy in Kerala State, India. Epilepsy Res 2004;62(2):163-70. 34. Ottman R, Lee JH, Risch N, Hauser WA, Susser M. Clinical indicators of genetic susceptibility to epilepsy. Epilepsia 1996;37(4):353-61.35. Bianchi A, Viaggi S, Chiossi E. Family study of epilepsy in first degree relatives: data from the Italian Episcreen Study. Seizure 2003;12(4):203-10.36. Manganotti P, Bongiovanni LG, Fuggetta G, Zanette G, Fiaschi A. Effects of sleep deprivation on cortical excitability in patients affected by juvenile myoclonic epilepsy: a combined transcranial magnetic stimulation and EEG study. J Neurol Neurosurg Psychiatr 2006;77(1):56-60. Epub 2005/12/20.37. Roebling R, Scheerer N, Uttner I, Gruber O, Kraft E, Lerche H. Evaluation of cognition, structural, and functional MRI in juvenile myoclonic epilepsy. Epilepsia 2009;50(11):2456-65. Epub 2009/06/06.38. Edwards T, Scott AG, Munyoki G, Odera VMa, Chengo E, Bauni E, et al. Active convulsive epilepsy in a rural district of Kenya: a study of prevalence and possible risk factors. The Lancet Neurol 2008;7(1):50-6.

    Multiple soliton solutions of second-order Benjamin-Ono equation

    Get PDF
    We employ the idea of Hirota’s bilinear method, to obtain some new exact soliton solutions for high nonlinear form of Multiple soliton solutions of secondorder Benjamin-Ono equation. Multiple singular soliton solutions were obtained by this method. Moreover, multiple singular soliton solutions were also derived.Publisher's Versio

    Diagnosis and Management of Multiple Sclerosis in Children

    Get PDF
    How to Cite This Article: Najafi MR, Najafi MA, Nasr Z. Diagnosis and Management of Multiple Sclerosis in Children. Iran J Child Neurol. Summer 2016; 10(3): 13-23.AbstractGrowing evidence indicates the safety and well toleration of treatment by Disease-modifying in children suffering multiple sclerosis (MS). The treatment is not straight forward in a great number of patients, thus patients with pediatric MS must be managed by experienced specialized centers. Common treatments of multiple sclerosis for adults are first-line therapies. These therapies (firstline) are safe for children. Failure in treatment that leads to therapy alteration is almost prevalent in pediatric MS. Toleration against current second-line therapies has been shown in multiple sclerosis children. Oral agents have not been assessed in children MS patients. Although clinical trials in children are insufficient, immunomodulating managed children, experience a side effect similar to the adult MS patients. However, further prospective clinical studies, with large sample size and long follow-up are needed to distinguish the benefits and probable side effects of pediatric MS therapies. ReferencesJulian L, Serafin D, Charvet L, Ackerson J, Benedict R, Braaten E, et al. Cognitive Impairment Occurs in Children and Adolescents With Multiple Sclerosis Results From a United States Network.J Child Neurol 2013;28(1):102-7.Inaloo S, Haghbin S. Multiple sclerosis in children. Iran J Child Neurol 2013;7(2):1-10. Epub 2014/03/26.Patel Y, Bhise V, Krupp L. Pediatric multiple sclerosis. Ann Indian Acad Neurol 2009;12(4):238.Saadatnia M, Najafi MR, Najafi F, Davoudi V, Keyhanian K, Maghzi AH. CD24 gene allele variation is not associated with oligoclonal IgG bands and IgG index of multiple sclerosis patients. Neuroimmunomodulation 2012;19(3):195-9.Inaloo S, Haghbin S. Multiple Sclerosis in Children. Iran J Child Neurol 2013 Spring; 7(2): 1–10.Jutta Gartner PH. MS disease-modifying therapies in children: ECTRIMS 2010;8:21-4.Kornek B A-EF, Rostasy K, Milos RI. Natalizumab therapy for highly active pediatric multiple sclerosis. JAMA Neurol 2013;Apr;70(4):469-75.Yeh E, Weinstock-Guttman B, Ramanathan M, Ramasamy D, Willis L, Cox J, et al. Magnetic resonance imaging characteristics of children and adults with paediatric-onset multiple sclerosis. Brain 2009;132(12):3392-400.Chabas D, Green AJ, Waubant E. Pediatric multiple sclerosis. NeuroRx 2006;3(2):264-75.McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001;50(1):121-7.Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69(2):292-302.Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005;58(6):840-6.Krupp LB, Tardieu M, Amato MP, Banwell B, Chitnis T, Dale RC, et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler2013 Sep;19(10):1261-7. doi: 10.1177/1352458513484547.Krupp LB, Banwell B, Tenembaum S. Consensus definitions proposed for pediatric multiple sclerosis and related disorders. Neurology 2007;68(16 suppl 2):S7-S12.Amato M, Goretti B, Ghezzi A, Lori S, Zipoli V, Portaccio E, et al. Cognitive and psychosocial features of childhood and juvenile MS. Neurology 2008;70(20):1891-7.Ghezzi A, Amato M, Capobianco M, Gallo P, Marrosu G, Martinelli V, et al. Disease-modifying drugs in childhood-juvenile multiple sclerosis: results of an Italian co-operative study. Mult Scler 2005;11(4):420-4.Mikaeloff Y, Caridade G, Tardieu M, Suissa S. Effectiveness of early beta interferon on the first attack after confirmed multiple sclerosis: a comparative cohort study. Eur J Paediatr Neurol 2008;12(3):205-9.Callen D, Shroff M, Branson H, Lotze T, Li D, Stephens D, et al. MRI in the diagnosis of pediatric multiple sclerosis. Neurology 2009;72(11):961-7.Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 1996;39(3):285-94.Pohl D, Rostasy K, Gärtner J, Hanefeld F. Treatment of early onset multiple sclerosis with subcutaneous interferon beta-1a. Neurology 2005;64(5):888-90.Banwell B, Reder A, Krupp L, Tenembaum S, Eraksoy M, Alexey B, et al. Safety and tolerability of interferon beta-1b in pediatric multiple sclerosis. Neurology 2006;66(4):472-6.Tenembaum SN, Segura MJ. Interferon beta-1a treatment in childhood and juvenile-onset multiple sclerosis. Neurology 2006;67(3):511-3.Pohl D, Waubant E, Banwell B, Chabas D, Chitnis T, Weinstock-Guttman B, et al. Treatment of pediatric multiple sclerosis and variants. Neurology 2007;68(16 suppl 2):S54-S65.Kornek B, Bernert G, Balassy C, Geldner J, Prayer D, Feucht M. Glatiramer acetate treatment in patients with childhood and juvenile onset multiple sclerosis. Neuropediatrics 2003;34(03):120-6.Ghezzi A. Immunomodulatory treatment of early onset multiple sclerosis: results of an Italian Co-operative Study. Neurol Sci 2005;26(4):s183-s6.Tenembaum SN, Banwell B, Pohl D, Krupp LB, Boyko A, Meinel M, et al. Subcutaneous Interferon Beta-1a in Pediatric Multiple Sclerosis A Retrospective Study.J Child Neurol 2013:0883073813488828.Sloka JS, Stefanelli M. The mechanism of action of methylprednisolone in the treatment of multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England) 2005;11(4):425-32. Epub 2005/07/27.Gorman MP, Healy BC, Polgar-Turcsanyi M, Chitnis T. Increased relapse rate in pediatric-onset compared with  adult-onset multiple sclerosis. Arch Neurol 2009;66(1):54.Shahar E, Andraus J, Savitzki D, Pilar G, Zelnik N. Outcome of Severe Encephalomyelitis in Children Effect of High-Dose Methylprednisolone and Immunoglobulins. J Child Neurol 2002;17(11):810-4.Spalice A, Properzi E, Faro VL, Acampora B, Iannetti P. Intravenous immunoglobulin and interferon: successful treatment of optic neuritis in pediatric multiple sclerosis. J Child Neurol 2004;19(8):623-6.Koziolek M, Mühlhausen J, Friede T, Ellenberger D, Sigler M, Huppke B, et al. Therapeutic Apheresis in Pediatric Patients with Acute CNS Inflammatory Demyelinating Disease. Blood Purification 2013;36(2):92-7.Najafi F, Ghaffarpour M, Najafi M, Aghamohammadi A, Saadatnia M. Prognostic value of intrathecal IgG synthesis in multiple sclerosis: a study in 54 patients. Tehran University Medical Journal 2008;66(1):1-6.Yeh E KL, Ness J, Chabas D, et al. Breakthrough disease in pediatric MS patients: a pediatric network experience: Annual Meeting of the American Academy of Neurology. Seattle WA: 2009.Yeh EA. Diagnosis and treatment of multiple sclerosis in pediatric and adolescent patients: current status and future therapies. Adolesc Health Med Ther 2010;1:61-71.Borriello G, Prosperini L, Luchetti A, Pozzilli C. Natalizumab treatment in pediatric multiple sclerosis: a case report. Eur J Paediatr Neurol 2009;13(1):67-71.Huppke P, Stark W, Zurcher C, Huppke B, Bruck W, Gartner J. Natalizumab use in pediatric multiple sclerosis. Arch Neurol 2008;65(12):1655.Makhani N, Gorman M, Branson H, Stazzone L, Banwell B, Chitnis T. Cyclophosphamide therapy in pediatric multiple sclerosis. Neurology 2009;72(24):2076-82.Rice GP, Hartung H-P, Calabresi PA. Anti-α4 integrin therapy for multiple sclerosis Mechanisms and rationale. Neurology 2005;64(8):1336-42.Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006;354(9):899-910.Ghezzi A, Pozzilli C, Grimaldi L, Morra VB, Bortolon F, Capra R, et al. Safety and efficacy of natalizumab in children with multiple sclerosis. Neurology   2010;75(10):912-7.Sousa L, de Sa J, Sa MJ, Cerqueira JJ, Martins-Silva A, En Nombre Del Portugal Experience With Natalizumab Study Group Snapshot EN. The efficacy and safety of natalizumab for the treatment of multiple sclerosis in Portugal.: a retrospective study. Revista de Neurologia 2014;59(9):399-406. Epub 2014/10/25. Estudio retrospectivo de la eficacia y seguridad del natalizumab en el tratamiento de la esclerosis multiple en Portugal.Huppke P, Stark W, Zürcher C, Huppke B, Brück W, Gärtner J. Natalizumab use in pediatric multiple sclerosis. Arch Neurol 2008;65(12):1655-8.Hauser SL, Dawson DM, Lehrich JR, Beal MF, Kevy SV, Propper RD, et al. Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N Engl J Med 1983;308(4):173-80. Epub 1983/01/27.Weiner HL, Mackin GA, Orav EJ, Hafler DA, Dawson DM, LaPierre Y, et al. Intermittent cyclophosphamide pulse therapy in progressive multiple sclerosis: final report of the Northeast Cooperative Multiple SclerosisTreatment Group. Neurology 1993;43(5):910-8. Epub 1993/05/01.Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N Engl J Med 2008;358(7):676-88.Tzaribachev N, Koetter I, Kuemmerle-Deschner JB, Schedel J. Rituximab for the treatment of refractory pediatric autoimmune diseases: a case series. Cases J 2009;2:6609.Carson KR, Focosi D, Major EO, Petrini M, Richey EA, West DP, et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patientstreated with rituximab, natalizumab, and efalizumab: a Review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncology 2009;10(8):816-24.Beres SJ, Graves J, Waubant E. Rituximab Use in Pediatric Central Demyelinating Disease. Pediatr Neurol 2014 Jul;51(1):114-8.Wynn D, Kaufman M, Montalban X, Vollmer T, Simon J, Elkins J, et al. Daclizumab in active relapsing multiple  sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol 2010;9(4):381-90.Bielekova B, Howard T, Packer AN, Richert N, Blevins G, Ohayon J, et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch Neurol 2009;66(4):483-9.Rose JW, Watt HE, White AT, Carlson NG. Treatment of multiple sclerosis with an anti–interleukin-2 receptor monoclonal antibody. Ann Neurol 2004;56(6):864-7.Ali E, Healy B, Stazzone L, Brown B, Weiner H, Khoury S. Daclizumab in treatment of multiple sclerosis patients. Mult Scler 2009;15(2):272-4.Gorman MP, Tillema J-M, Ciliax AM, Guttmann CR, Chitnis T. Daclizumab use in patients with pediatric multiple sclerosis. Arch Neurol 2012;69(1):78-81.Gorelik L, Lerner M, Bixler S, Crossman M, Schlain B, Simon K, et al. Anti-JC virus antibodies: implications for PML risk stratification. Ann Neurol 2010;68(3):295-303.Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, Natarajan A, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 2012;366(20):1870-80.Sørensen PS, Bertolotto A, Edan G, Giovannoni G, Gold R, Havrdova E, et al. Risk stratification for progressive multifocal leukoencephalopathy in patients treated with natalizumab. Mult Scler 2012;18(2):143-52.Yildirim-Toruner C, Diamond B. Current and novel therapeutics in the treatment of systemic lupus erythematosus. J Allergy Clin Immunol 2011;127(2):303-12.Zappitelli M, Duffy CM, Bernard C, Gupta IR. Evaluation of activity, chronicity and tubulointerstitial indices for childhood lupus nephritis. Pediatr Nephrol 2008;23(1):83-91.Di Filippo S. Anti-IL-2 receptor antibody vs. polyclonal anti-lymphocyte antibody as induction therapy in Pediatr Transplant. Pediatr Transplant 2005;9(3):373-80.Gallagher M, Quinones K, Cervantes-Castaneda RA, Yilmaz T, Foster CS. Biological response modifier therapy for refractory childhood uveitis. Br J Ophthalmol 2007;91(10):1341-4.Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Sørensen PS, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 2010;362(5):416-26.Kappos L, Radue E-W, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010;362(5):387-401.Chun J, Hartung H-P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacoll 2010;33(2):91.Comi G, O’connor P, Montalban X, Antel J, Radue E, Karlsson G, et al. Phase II study of oral fingolimod (FTY720) in multiple sclerosis: 3-year results. Mult Scler 2010;16(2):197-207.Cohen JA, Barkhof F, Comi G, Hartung H-P, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis.N Engl J Med 2010;362(5):402-15.Mehling M, Lindberg R, Raulf F, Kuhle J, Hess C, Kappos L, et al. Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology 2010;75(5):403-10.Edwards JC, Szczepański L, Szechiński J, Filipowicz-Sosnowska A, Emery P, Close DR, et al. Efficacy of B-cell–targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004;350(25):2572-81

    Utility of Spatial Filtering Techniques in the Remote Sensing of Soil Erosion in the Sefid-Rud Reservoir Catchment in Iran

    Get PDF
    The objective of this study is to investigate the applicability of Landsat Thematic Mapper digital images assisted by computer analysis to the study of soil erosion. The study aims to identify the sources of sediment and areas of dissected land in the catchment basin of the Sefid Rud reservoir in northern Iran. First, histogram equalization is deliberately applied to the original band 3 to reduce the noise and unv/anted edges and lines in the dark tail of the histogram, mainly vegetation, and the light tail, the non-eroded areas, and also to improve the visual appearance of edges and lines on the processed image. The next step is high pass filtering, unlike the conventional edge detection technique in which the first step is low pass filtering. In this instance, the result of low pass filtering was that faint edges, evidence of the gullies, were removed and highly eroded areas appeared as non eroded areas. Therefore low pass filtering was replaced with high pass filtering, which highlighted faint edges and lines. The next step is detecting the edges and lines. When using the edge and line detecting technique for detecting dissected lands one needs to take into account that a gully might appear as two or three edges if its width is more than one pixel or as one line if it is just one pixel or less than one pixel in width on the Thematic Mapper image. Therefore an algorithm should be chosen which has the ability to detect both edges and lines. The existina edge and line detecting filters such as the Sobel , the Robert, compass, the Laplacian convolution masks and the directional line detecting technique were evaluated. The Sobel and the Robert operators were found to be powerful edge detecting techniques, but the Laplacian convolution mask was found to be the best for detecting the badland and gullied areas because it has the ability to detect faint edges as well as coarse edges. Not only does it detect both edges and lines, but it also gives stronger weight to the lines than the edges. Only edges and lines in gullied areas were of interest for detecting the dissected lands, but all other artificial and natural lines and edges were also detected. The result of applying the Laplacian function appears on the screen as black, white and gray pixels. The black pixels are non-eroded land, white pixels are eroded and gray pixels are transitional between eroded and non eroded. To change the transitional pixels to either eroded or non eroded and also for printing the image as hardcopy the thresholding function of IAX was applied to the edge detected image. In order to mask out the noise within the vegetated areas caused by edges of plots of different crops the vegetation index (VI) was added to the detected image. In the derived image black pixels are evidence of gullies and white pixels are non dissected lands. In this image it is possible to find out the relative proportion of dissected and non dissected land globally and / or within the regions of interest. Although it is possible to measure the proportions of dissected and non dissected land and they are also visually distinguishable, they have not been categorised so far. To provide a map with categories of dissection, the first step is to smooth the image. To obtain the smooth image a low pass filter was used. Two ways were tested for producing the map of dissected lands from the smoothed image. In the first method one of the strongest edge detecting techniques, the Sobel operator was used on the smoothed image of dissected lands. In the result boundaries were detected and eroded and non eroded areas outlined. In the second method for categorising the smoothed image, the density slicing function of IAX was used to split the dissected land into different levels of severity. We concluded that the second method gives a better result. It was found in previous work that among erosion features gullies are recognizable on Thematic Mapper data. Detection of gullies and gullied areas by means of classification, whether supervised or unsupervised, was not successful in this study area. We came to the conclusion that the application of a Laplacian mask on the enhanced band 3 image could detect dissected lands. When aerial photographs and Thematic Mapper data are compared, the advantage of aerial photographs was that gullies actively cutting headwards were detectable, but on the Thematic Mapper data distiguishing between active and non active gullies was impossible. Aerial photographs are a very good tool to detect all kinds of erosion features (sheet, rill, and gully), but in my study area applying this new method (DLDT) on Thematic Mapper data can provide as much detail of soil erosion as is included in previous soil erosion maps made from aerial photographs. The Sobel and the Robert operators were found to be very strong edge detectors, but the ability of the Laplacian convolution mask for detecting gullies was greater. (Abstract shortened by ProQuest.)

    Sample and Filter: Nonparametric Scene Parsing via Efficient Filtering

    Get PDF
    Scene parsing has attracted a lot of attention in computer vision. While parametric models have proven effective for this task, they cannot easily incorporate new training data. By contrast, nonparametric approaches, which bypass any learning phase and directly transfer the labels from the training data to the query images, can readily exploit new labeled samples as they become available. Unfortunately, because of the computational cost of their label transfer procedures, state-of-the-art nonparametric methods typically filter out most training images to only keep a few relevant ones to label the query. As such, these methods throw away many images that still contain valuable information and generally obtain an unbalanced set of labeled samples. In this paper, we introduce a nonparametric approach to scene parsing that follows a sample-and-filter strategy. More specifically, we propose to sample labeled superpixels according to an image similarity score, which allows us to obtain a balanced set of samples. We then formulate label transfer as an efficient filtering procedure, which lets us exploit more labeled samples than existing techniques. Our experiments evidence the benefits of our approach over state-of-the-art nonparametric methods on two benchmark datasets.Comment: Please refer to the CVPR-2016 version of this manuscrip
    • …
    corecore